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Path integrals in the symbol space of chaotic mappings 
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Abstract. We inImd&a path-integral-like partition function for chaotic mppinps. This path 
integral is based on arbitrary non-Markovian stochastic processes generated by the symbolic 
dynamics of the map rather than the Wiener process. Our approach can be regarded as an 
extension of the thermodynamic formalism to infinitely many invene temperams. The concept 
of R€nyi enhopies is generalized 10 entrapy functionals. A generalized transfer operator is 
introduced, which allows us to calculate the entropy functionals with high numerical precision. 
Several examples are worked out in detail. 

1. Introduction 

The symbolic dynamics technique has proved to be very useful for the qualitative and 
quantitative analysis of chaotic motion [IA]. Regarding the initial values as random 
variables, deterministic chaotic systems generate complicated stochastic processes, which 
typically are neither Markovian nor Gaussian. A useful tool is to characterize these processes 
by a grammar of allowed and forbidden sequences in the symbol space, and to study the 
probabilities associated with the various symbol sequences. Indeed, the hierarchy of all 
probabilitieSyields quite a complete description of the stochastic properties of the dynamics. 

The idea of the present paper is to use the complicated stochastic processes generated 
by nonlinear dynamical systems for the definition of a generalized path integral. The usual 
path integral, of utmost interest in Euclidean quantum theory and quantum field theory 
[5-71, is based on a simple Gaussian Markov process: the Wiener process, or Brownian 
motion. Nevertheless, replacing the Wiener process by a more complicated chaotic process, 
we can formally define a more general path integral. A padcularly straightforward and 
easy method to introduce such a chaotic path integral is to choose a symbolic dynamical 
description, and to define a path integral in the symbol space, where transition probabilities 
are well defined; In contrast to the Markovian Wiener process, the transition probabilities 
will now also contain higher-order memory effects, due to the underlying deterministic 
chaotic dynamics. 

Our path-integral approach can be formulated in an elegant way using the language 
of the thermodynamic formalism of dynamical systems [4,8-141. We consider partition 
functions where a suitable observable depends on the entire symbolic path of the chaotic 
system. In particular, we will choose an observable that measures the information production 
of the system in quite a general way. In the language of the thermodynamic formalism our 
approach means that we do not consider a single inverse temperature f3 but introduce an 
infinite sequence of different inverse temperatures Po, 61, f3z. . . . . In the continuum limit 
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these various inverse temperatures define an inverse temperature j e l d  (or a temperature 
function). In this way we will generalize the concept of Rhyi  entropies [U] to entropy 
functiomls, which depend on a given test function, the temperature field. 

It is well known that a stochastic process is not fully described by the moments (the 
characteristic function) alone, rather, its complete determination requires the knowledge of 
the set of all higher-order correlation functions (the characteristic functional) 1161. In the 
same context we claim that the most complete description of the information production of 
a chaotic system is not given by the R&yi entropies alone, but by the entropy functionals 
introduced here. The Rhy i  entropies are recovered from the entropy functionals for the 
special case of a constant test function. 

Only in very rare cases can one evaluate path integrals in the symbol space (or entropy 
functionals) exactly. As one of these rare examples, we will treat symmetric and asymmetric 
tent maps, where we obtain explicit expressions for the functionals. In more general cases 
(m-step memory maps), a powerful numerical tool for the evaluation of entropy functionals is 
a generalized transfer matrix method. ,The generalized transfer matrices depend on the local 
temperature field. They reduce to the ordinary transfer matrices for a constant temperature 
field. The entropy functional is obtained from the growth rate of the product of local transfer 
matrices. The concept can be generalized to a path-integral transfer operator for general 
onedimensional mappings. 

This paper is organized as follows. In section 2 we introduce path integrals in the 
symbol space, starting from the definition of the usual path integral and generalizing to non- 
Markovian symbolic stochastic processes. In section 3 we introduce entropy functionals, 
which can be regarded as special path integrals in the symbol space, where the path- 
dependent observable is chosen in such a way that the information production of the 
system is measured. In section 4 we treat symmetric and asymmenic tent maps as simple 
examples. In section 5 processes with a two- and three-step memory are investigated, and 
the generalized transfer matrix is written down. Some numerical results are presented. In 
section 6 we generalize to m-step memory maps, as well as to maps with escape, and to 
non-hyperbolic cases. The general path-integral transfer operator is introduced in section I. 
Our concluding remarks are. given in section 8. 

2. Path integrals in the symbol space 

Let us first recall the definition of the usual path integral based on the Wiener process [5-71. 
Given some observable A depending on the entire trajectory of the system, the path integral 
Z with respect to A is defined as 

Z =  lim Z N  
N - r W  

where 

are the transition probability densities of the Wiener process with diffusion constant D, and 
t is a small time constant that goes to zero as N, the number of lattice points, approaches 
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infinity: 
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(4) 

where t is the total time elapsed. For example, to simulate aquantum system with potential 
V in Euclidean time t (obtained by Wick rotation i + i i  of the physical time F) one chooses 
for the observable A 

t 
N 

z = -  

and D = h/m (see, for example, [14]). According to the Feynman-Kac formula, the 
integral ZN converges to the integrated Euclidean propagator of the quantum system in the 
limit N -+ 00. 

Let us now proceed to a chaotic mapping f : X + X .  We assume that a generating 
partition B = (S i ,  . .~. , BR) of the phase space X exists (otherwise a supremum over all 
possible partitions has to be taken). The symbolic dynamics technique can then easily be 
applied (see, for example, [2,  41). To each orbit xk+i = f ( x k )  we associate the symbol 
sequence. io, i l ,  iz, . . . , where ik = j if xk E B j .  Let us denote the probability to observe 
the symbol sequence i o , .  . . , i s  by p( i0 , .  . . , iN). Trajectories whose first symbols are 
i o , .  . . , iN start from an interval J"+"(io,. . . , iN) called a level-(N + 1) cylinder. The 
probability p(i0, . . . , iN) is related to a given measure U and the level-(N + 1) cylinders 
J"+"(io, . . . , iN) of the map by 

Typically, one chooses U to be either the natural invariant measure p or the Lebesgue 
measure L. We can always factorize the probability p( i0 , .  . . , iN) into a product of 
conditional probabilities: 

p(io, . . . , in) = p(io)p(illio)p(izlio, i d .  . .p(iNlio, . . . , iN-1). (7) 

Here p(ikli0, . . . , ik-1) denotes the conditional probability to observe the symbol ik if the 
sequence i o , .  . . , ik-1 was observed before: 

~ 

(provided p(i0. . . . , ik-1) # ~0). Next,' we define a partition function Zt )  for a given 
observable A and a measure U in an analogous way as it is done for the 'classical' path 
integral 

Z$'[A] = c~ p ( i o ) p ( i i l i o ) p ( i z [ i ~ , ~ i ~ ) .  . . p(iNlio, . . ., iN-dA(i0, .. . , i N ) .  (9) 

The integrals over the continuous states are replaced by sums over the discrete states ik. 
The fundamental difference compared to the usual path integral is the fact that, in general, 
for a chaotic mapping f, the transition probabilities p(ikli0,. . . , Li)  depend on the entire 
history io, . . . , ik-1. Generically, the stochastic processes generated by chaotic mappings 
are non-Markovian. Moreover, they are non-Gaussian. This is what makes the partition 
function (9) an interesting object to study in the thermodynamic limit N + 03. 

If there is no generating partition, we either have to take a supremum over all possible 
partitions or introduce an additional continuum limit in (9), where the size of all cells 
approaches zero. In the latter case we obtain a generalized path integral defined on a 

. .  
IO,....t" 
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continuum of states. The advantage of a generating partition is that the continuum limit 
need not to be performed. 

It depends on the question under consideration what kind of function is chosen for the 
observable A(i0, . . . , iN). If one is interested in a generalized quantum mechanics based on 
a more complicated stochastic process than the Wiener process, an appropriate choice is 

C Beck and T Til 

where V is a potential defined on the coarse-grained phase space. A similar approach, 
based on two-dimensional maps f and a path integral defined in the phase space rather 
than the symbol space, has been shown to retain the usual quantum mechanics based 
on the Wiener process in an appropriate continuum limit of the partition [14]. In this 
paper, however, we would like to consider other test functions A that are motivated by the 
needs to characterize the information production of chaotic systems rather than by quantum 
mechanical applications. These test functions will lead to a generalization of the concept 
of R h y i  entropies. 

3. Entropy functionals 

We choose a test function given by the conditional probabilities itself raised to different 
powers p k  - 1: 

(11) 

(12) 

A-I . . # , - I  A(i0, ..., i N )  = p(i0)  p(rl110) . . . p  ( i ~ l i o ,  ..., iN-l)@’’-’. 

That is to say, we study the partition function 

z$’(P~, . . . , p N )  = p(io)B”p(illio)oI . . .p(iNliO.. . . , iN-1)” .  
in. .... ia 

Using equation (8). we may equivalently write 

In the thermodynamic formalism, the @j can be regarded as inverse temperatures. Usually 
one studies only one inverse temperature or at best two [17-221. Here we want to illustrate 
that, in fact, the generalization to infinitely many inverse temperatures makes sense for a 
more general characterization of the information production of chaotic systems. 

First of all, let us introduce conditional dynamical scaling indices a‘k by writing 

p(ikli0.  . . . , ik-1) =e“* (16) 
(p ( i0 )  = e””). By subsequent differentiation’of ZE’(p0,. . . , @ N )  we obtain the higher-order 
correlation functions of these scaling indices: 

Here (. . .) denotes the expectation value with respect to the path probabilities p( i0 . .  . . , i N ) .  
Next, we introduce a generalized thermodynamic potential G(”)(po, p1, . . .) as 
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It is defined for a given infinite sequence of inverse temperatures Po, j?, , . . . . 
For a classical path integral, the time difference s between the transition steps approaches 

zero in the thermodynamic limit N + CO (see equation (4)). It is actually convenient for 
partition functions in the symbol space as well to consider an analogous scaling limit of the 
time. We may assume that each iteration step of the map corresponds to a time unit t that 
is related to the total number N of steps by 

t 
N 

t = - .  

The total time elapsed is I = N r .  We then perform the limit T + 0, N + CO in such a 
way that t = N t  stays finite. Introducing some function j?(t’) defined on the interval [0, t ] .  
for each N the j?k may be chosen as 

#h = j?(kr)  = j ? ( k t / N )  (20) 

(the j?k = j?p) actually depend on two indices k and N ,  but usually we will suppress 
the index N). In the limit N --f CO we obtain a functional depending on the given test 
function ,S(t’): 

C(“’[j?] = - 1 
N-m N lim - I n Z $ ) ( ( j ? ( k t / N ) ] ) .  

This functional plays an analogous role for the information production of a chaotic system 
as the characteristic functional does for the correlation functions of a stochastic process 
(see, for example, [16]). 

By atrivial change of coordinates (i.e. choosing the test function B(t’) = j?(l’/ t)  instead 
of BO’)) we can always reduce the problem to that of a test function defined on the unit 
interval [O, I]. Thus from now on we will use the following definition of the functional: 

In what follows we shall mainly concentrate on the case that the path probabilities are 
taken with respect to the natural measure p of the map, and suppress the superscript p. If 
all pk take on the same value p, we obtain (up to a trivial factor) the RCnyi entropies [15] 
K(j?): 

For non-constant &, we obtain more general types of entropies characterizing the system 
in such a way that higher-order correlations in the symbol sequences are ‘scanned‘ by the 
various j?k. G&. j?, , . . .), respectively C[j?], will therefore be called the entropy functional. 

What is the ‘physical meaning’ of these entropy functionals? Suppose we want to 
investigate the information production of the chaotic system in a time-dependent way. For 
example, we may first be more interested in topological properties of the symbolic trajectory 
( p  = 0), but at the end of the observation (at time t = 1) be more interested in metric 
properties (j? = 1). This,change of interest can be modelled by some function B( t )  on the 
unit interval that increases from 0 to 1. The conesponding information production of the 
system is measured by C[B].  The result depends on the entire function j?(t). We will work 
out several examples in the following sections. 
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4. Symmetric and asymmetric tent maps 

As a rather trivial example, let us first consider the symmetric tent map 

on X = [0, 11. Here the symbols ik take on two values 0 and 1. We have p(i0,  . . . , i N )  = 
2-cNt ' )  and p(ikl i0 . .  . .&-I)  = 5. Thus I 

(25) N+l  (I)h+'"+PN 
Z N ( B 0 , .  . ., B N )  = 2 2 

(the same simple result applies to the binary shift map). This yields 

Since /3k = B(kr) and 1 j N  = r ,  the entropy functional is given by 

G[p]  = (- 1 + l1 dt B(t)) In 2.  

For p(t) = BO = constant this reduces to the well known result 

G(Bo) = (-1 +Bo) Inz  (28) 
i.e. the R&yi entropies K(60) have the constant value In2. If the function p(t) is not 
constant but increases (for example) as a power law in t from 0 to 1 

@ ( t )  = t? q 5 0 (29) 

we get 

i.e. some intermediate value between G(0) = -In2 and G(l)  = 0, which depends on the 
exponent q. 

A somewhat less trivial example is provided by the asymmetric tent map 

on X = [0, 11, where wl = 1 - WO. In this case the natural measure has a constant density 
and, therefore, the probability to find a symbol sequence io, . . . , ik is 

(32) p ( i 0 , .  . . , ik) = wi,wi, ... wit. 

From equation (13) we obtain 

z N ( B 0 .  ..., B N )  = c~ W z ( W i , W i , )  41...(W;0...W&)qN. 

Z N ( B 0 , .  . . , B N )  = z~ wio Po will.. B . w c  

= n ( w k  +Wf). 

(33) . .  
!".....IN 

Since q k  + q k + l  + ... + q N  = B k ,  

io. .... i~ 
N 

k 0  

(34) 

(35) 
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This.yields 

I N  
G(Bo,fl,, ...) = -  I' un - C l n ( w t + w f ( ' )  

N-m N.,, 

and the entropy functional is given by 
1 

G[p]  = - 1 dt In (w{(') + wf"))  . (37) 

Recently, it has been shown that the asymmetric tent map produces information in just 
the same way as successive measurements on a quantum mechanical system with a finite 
two-dimensional phase space do [231. In this physical application, a non-constant p ( t )  (or 
in general, a test function depending on the entire symbolic trajectory) corresponds to a 
measuring device that changes in time. 

5. Processes with two- and three-step memories 

The asymmetric tent map provides an example for which the conditional probabilities only 
depend on the very last digit of the symbolic code. One can extend the range of the memory 
by one step if one considers piecewise linear single humped maps that have breakpoints (i.e. 
non-differentiable points) at the two pre-images of their maxima, too (see figure 1 ) .  Such 
maps are linear on their level-2 cylinders J"(i0, i l )  (in the case of fully developed maps, 
like, for example, the one shown in figure 1, only three of the slopes are independent). 
In such cases the density e ( x )  of the natural measure p is piecewise constant on the two 
level-1 cylinders. Let s(i0, i l )  denote the modulus of the slope on cylinder J(*)(iO, i l ) .  The 
ratio of the constant values e(0) and e ( ] )  on J( ' ) (O)  and JC1)(1), respectively, follows from 
the FrobeniuoPerron equation 

Figure 1. Example of a two-step memory map 
on X = [O. I]. The parameters are ~(0.0) = 4. 
s(0. I )  = I. s(l, I )  = f. ~(1.0) = and l(O.0) = 

zy. . The general condmon for the Markov property of 
suchmapsimpliestherelations(0. l)s(l,O)(s(O.O)- 
l)(s(l. 1) - I)= s(O.O)s(l. I )  between the slopes. 
The length scales follow from normalization. 

1 

6 &. KO. I) = -. i(1.1) = 3, i(1.0) = S' ' 
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(see, for example, [24]). The one-symbol probabilities are then obtained as p ( i 0 )  = 
e ( i o ) l ( i o ) .  Here and in what follows we use the notation that L(i0, i l ,  . . . , i N - l )  denotes 
the length of the level-N cylinder J("7(io. i l ,  . . . , i N - 1 ) .  

A direct computation of the two-symbol partition sum shows that Z1 is the scalar product 
of two real vectors 

C Beck and T Tl1 

respectively (io = 0, 1). We use the convention that 'ket's denote column vectors. 

the vectors a and c: 
In the case of symbol sequences of length three, a 2 x 2 matrix T is sandwiched between 

Note that the argument of c has been shifted to p z .  

products of the same matrix T taken at different temperatures. One obtains 
Considering longer and longer symbols implies the appearance of more and more 

(45) 
This form suggests that T can be called a transfer matrix which in our case also transfers 
the temperature. It is worth noting that transfer matrices of this kind have already been 
used in the theory of Ising systems a long One ago [U]. In fact, the two-step memory map 
shown in figure 1 corresponds to a nearest-neighbour Ising chain [26], and our computation 
is the analogue of applying the transfer matrix method to a chain the temperature of which is 
changing in the course of this procedure. It also follows from (18) that the entropy functional 
G@o, PI,  . . .) can be obtained from the asymptotic growth rule of the ( N  - 1)-fold matrix 
product T ( ~ N ,  B N - ~ ) .  . . T(pz,  PI) acting on any fixed generic vector. 

In order to find the general structure of the transfer matrix let us also consider cases 
with three-step memories. Such maps can be obtained by introducing breakpoints at the 
endpoints of the level-3 cylinders, too. Let s(i0, i l ,  iz) denote the modulus of the slope of 
the piecewise linear map on the cylinders JO'(i0. i l ,  i z )  (see figure 2). 

The'natural density now turns out to be piecewise constant on the level-2 cylinders. 
Denoting its values by e(io, il), the Frobenius-Perron equation implies that the column 
vector le) = (@(a, O), e ( 0 ,  l) ,  e(1, I), e ( l , O ) )  is a solution of the matrix equation I Q )  = 
Tle)  where T is 

ZN(BO, ..., B N ) =  (c(BN)IT(BN,BN-I) ...T(BzIBi)la(Bi.Bo)). 

s-](O. 0,O) 0 0 s-1(1,0,0) 
s-'(O, 0, 1) 0 0 +(l,O, 1) 

0 s - ' (O, l ,O)  +(I,  1,O) 0 
) . (46) T = (  0 s-'(O, 1.1) sd (1 ,  1, 1) 0 

With the knowledge of e one can compute the cylinder measures and the conditional 
probabilities of symbol sequences of any length. A direct computation of the partition sum 
then leads to the form 
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Figure 2. Example of a three-step memoly map 
an X = [O. 11. For simplicity, we have chosen a 
symmetric case, although our approach is valid in 
full generality. The parameten are s(0.0.0) = y, 
~(0.0,  1) = y, ~(0.1, 1) = $. s(O,l, 0) = 2 2 md 

l(0. 1.0) = $. The general condition for the 
Markov prapeay of such maps implies the relation 
s(O.0. 1) S(0,l.O) (do, 0,O) - l)(S(O, 1. I )  - 1) = 
s(O,O, O)s(O. 1. 1) between the slopes. The length 

l(O.O.0) = g, l(O.0, I )  = M. 1(0, I ,  I )  = g, 

Oo0 ‘lo ‘I1 lo‘ loo 

z scales follow from normalization. 

Now the vectors a and c can be expressed as 

(a(B, B’,  io, il) = pB”(io)pB’(iliio)l-8(io, i1) (48) 
( c ( ~ ) l i o , i l )  = ~ B ( i o , i l , ~ ) + [ B ( i O , i l ,  I ) .  (49) 

The transfer matrix is a 4 x 4 matrix with eight non-zero elements and depends on two 
consecutive values of p just as in the previous case. It is of the form 

2 

This is exactly 
thermodynamic 

(50) 

0 SP(O.O.0) 

I!‘ 8 0 1 0  1R’-P 1.1.0 ** 0 

’(B, B‘) = 

of the same structure as the usual transfer matrix introduced in the 
formalism of dynamical system [27]. Note that T(B,,Y) contains 

geometrical factors solely, and the only place where the densities appear is in the vector a. 
The matrix representing the Frobenius-Perron equation is just T = T(1, 1). 

The generalized transfer matrix method provides us with a very precise algorithm 
to calculate entropy functionals numerically. To test our method, we have chosen three 
different test functions B(t) on [O, 11 parametrized by a parameter q, namely p f ) ( t )  = tq, 
#)(t) = qsinZirt, and Bi3)(t) = q t .  The values tested by these functions take values 
around the origin. By adding arbitrary constants or taking other functional forms any subset 
of the B-axis can be investigated. We have chosen four different examples of mappings: The 
symmetric tent map, an asymmetric tent map with WO = i ,  a two-step memory map with 

figure 2). memory map with s(O,o, 0) = -, 7 s(o,o, 1) = 2, I s(o,1, 1) = 2, 4 s(0, I ,  0) = - ( 
The entropy functional has been calculated numerically from the asymptotic growth rate of 
the partition function (43, where the transfer matrix is given by (44) and~(50), respectively. 
The numerical results for C[@)] as a function of the parameter q are plotted in figures 3-5. 
The convergence of the method is rapid and the necessary amount of computing time is 
very small. Proceeding to just N = SO, we already obtain the entropy functionals G[Bt)] 
with a precison of five digits. This means that the errors in figures 3-5 are smaller than 

s(O.0) = 4, s(0, 1) = 1, 2 s(1, 1) = 2 2’ s(1,O) = - ,” ( figure I),  and a symmetric three-step 
10 
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0, I ,  I I I ,  I I I 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 
'1 

.06! " " " " ' 

Figure 3. Entropy functionals obtained with the test function #(r) = tn  for the symmetric 
tent map, the asymmetric tent map with WO = 116, and the two- and three-step memory maps 
of figure 1 and figure Z respectively. Each curve stam in the origin because for p = I the 
entropy functional vanishes. The m g e  of p values tested is [O, 11 in this case. For large 7 all 
mmes came close to the horizontal line C = - In2 since then the function I?  lakes on values 
very close to zero in almost the entire interval 0 c f < 1, and for p 0 the modulus of the 
enmpy function coincides with the topological entropy K ( 0 )  = In2 of lhe map. 

0 

4.5 

.1 

['1Si,72*1 

-1.5 

-2 

4 . 5  

I 

A 
L.- 1 1.5 2 2 5  3 3.5 4 4.5 5 

Figure 4. Same as figure 3, but with an oscillating test fuoction with avenge 0 (p,?(t) = 
qsin2ar). The curves now stm at G = -K(O) = -1112. Note that the deviation from the 
entropy functional of the tent map increases with the amplitude q of the oscillations. The interval 
tested is now [ -q .  71. The monotonic decrwx of G with 7 follows from the observation that 
the contributions (0 - I)K@) related to the local Renyi entropies K @ )  are larger in modulus 
for B < 0 than farp'=-p. 
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the widtlis of the curves plotted. Most of our numerics was done with N =~ 100. The 
symmetric tent map mainly served us as an example to check our results, since for this 
special mapping all entropy functionals can be evaluated analytically with the help of (27): 

(the same formulae are valid for the binary shift map). The plots thus show in a quantitative 
way how the information productions of the various mappings deviate from that of a simple 
Bernoulli shift dynamics. 

0 0.5 I 1.5 2 2.5 3 3.5 4 4.5 5 
7 

Figure 5. Same as figure 3, but with a linear test function #'(t) = qt. The monotonic increase 
of C with q is due to the fact that the interval [O. q] tested by qt is non-negative. The local 
conuibutions (0 - l ) K ( p )  of increasing order become more and more dominating. 

6. The general case 

First, consider the case of an m-step memory map that is piecewise linear on its level-m 
cylinders. It is clear from the examples above that Z N  can then be written as 

(54) 
where a and c are now vectors with 2m-1 components and T is a 2"'-] x Zm-I matrix with 
2m non-zero elements. Their explicit forms can be derived in an analogous way as above. 

Let us now tum to general smooth maps exhibiting fully developed chaos. The 
effect of truncating the memory in the symbol sequence distribution has been studied in 
detail. Szipfalusy and Gy6rgyi pointed out [28] that truncated entropies computed with the 
assumption of having an l-step memory in p(i0,  . . . , i ~ )  approach the exact metric entropy 
K(1) in an exponential way as exp(-yl) where y is a characteristic quantity of the map, 

ZdBo,. . . . B N )  = (c(BN)IT(BN, B N - I ) .  . .TLR,, Bm-i)laG6m-il.. . , Bo) )  
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the so-called entropy decay rate. It is typically of order unity with the exception of near- 
intermittent maps where y is very small. In intermittent systems the decay is algebraic 
implying y = 0. For one-dimensional fully developed maps the entropy decay rate can also 
be expressed by the order-3 R h y i  entropy K ( 3 )  as y = 2K(3). Analogous investigations 
of the order-q Renyi entropies K ( q )  led to the introduction of generalized entropy decay 
rates y(q)  [29]. They are typically of the same order of magnitude as y. These results 
show that for fixed p values memory effects are only important for sequence lengths of 
the order of I/y. In our path-integral approach, we thus expect that for functions testing a 
not too broad range of p, smooth maps behave similarly as m % I/y-step piecewise linear 
models, and with the exception of near-intermittent cases this m is of order unity. 

As an example, we calculated entropy functionals for 1-step memory approximations of 
the fully developed logistic map f ( x )  = 4x(l - x ) .  These piecewise linear approximations 
are obtained by attributing constant slopes to the N-cylinders of f. A straightforward 
calculation yields for the two-step memory approximation the slopes s(00) = s(l0) = 

+ I), s(0l) = s(l1) = A, and for the three-step memory approximation 

f i  + a, ~(010) = ~(110) = m. Figure 6 shows the corresponding entropy 
functionals for the same test functions #'(t) as in figures 3-5. Indeed, for q 6 2 there is 
hardly any difference between the results for the two- and three-step mappings, thus here 
the functionals approximate those of the logistic map quite precisely. On the other hand, 
for larger values of q, corresponding to larger 0 intervals tested, the difference between 
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s(ooo) = s(ioo) = z + J G Z ,  s(ooi) = ~(101) = J Z + , h X Z ,  ~ ( O I I )  = s ( ~ ~ ~ )  = 

0.5 

G 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
n 

Figure 6. Entropy functionals obtained far two- and three-step memory approximations of 
the fully developed logistic map f ( x )  = 4x(L - x). The test functions are &'(t) = t*, 

y = In4 [281. Thus we expect that a three-step memory map is a good npproximation. This is 
supported by the good coincidence of the two- and three-step results for those 0 values where 
the range of temperature tested is not tm broad. 

pq m ( t )  = qsin@xr), #)(I) = qf,  respectively. The entropy decay rate for this map is 
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the two- and three-step functionals increases. Here memory effects are measured in a more 
sensitive way. 

The natural measures of smoothhyperbolic maps have non-singular densities. Therefore, 
the scaling behaviour of the length scales and the cylinder measures is the same. 
Consequently, for such maps we expect ZN to appear in the form of (55) where the transfer 
matrix is of the type 

GI, iz, . . . . im-ilT(,S, ,5”)lio, i;. . .., ik-2 ) . (55) 

The non-zero matrix elements are 

= t  (@*@’)(io, . . .im-i)a;,,;; . . 

t@*@’)(io.. . .im-l) = 1 #‘+(io,. . . i m - l ) d ( i 0 ,  ... ,im-l) (56) 
where U stands for the daughter-to-mother ratio [26] defined as 

In piecewise linearm-step processes o(i0, . . . , im-l) = s-l(i0, . . . , im-l) and werecover 
the previous results. For general smooth hyperbolic maps the explicit form of the vectors 
a and c is not known but the generalized thermodynamic potential can be extracted from 
the growth rate of the product T ( @ N .  ,!$.,-I). . . T(&, &-I) when acting on any generically 
chosen fixed vector c’. Defining 

as the growth rate of the product T ( B N ,  PN-I). . . T(&, &-i)ld). we obtain 
1 

N-m N G(Po,PI ,  ... ) = -  I’ im - In ).(Bo, . . . P N )  (59) 

independently of c’. Here 11 11 denotes the length (or any appropriate norm) of a vector. 
The formula can again be used for the numerical determination of the generalized 
thermodynamic potential by choosing e.g. IC’) as the vector (1,. . . , 1). In ractice, one 

B j N )  = B(k/N) .  The difference approaches C[B] for large N .  
We emphasize again that the leading exponential behaviour is governed by the transfer 

matrix rather than by the vectors it is acting on. Vectors a and c in (55) contain 
information concerning the natural density but contribute to the prefactors only. This is 
why the generalized thermodynamic potential can be determined by any generic choice of 

It ‘is worth mentioning briefly the case of open maps generating transient chaos [301. 
Such maps possess fractal invariant sets, and the cylinders provide an ever refining coverage 
of this set. Covering a set of measure zero, the total length of the level-N cylinders decreases 
exponentially with N .  Therefore, what appears in such cases in the transfer matrix is the 
normalized length I(i0,. . . , im-1)/xi0 ,_,_. im-, l(i0,. . . , im-l) rather than the length itself. 

Finally, let us return to fully developed chaotic maps and investigate the effect of 
,non-hyperbolicity. In such cases the natural density is no longer analytic and, because 
of its singularity, the cylinder measures p(i0,. . . , i N )  are not always proportional to the 
cylinder lengths l(i0.. . . , i ~ ) .  In order to define the entropy functional we have to use the 
probabilities instead of the lengths. Therefore, we define the transfer matrix in its most 
general form by replacing t(6.B’) by 

calculates numerically the difference In A(#), . . . , &”)-In A(po ( N + I )  , . . . , pN+l &+I) ), where 

c’ correctly. 

tip,@’)(io, . . . i,,,-l) = p”-fl(io, . . . , i,-l (io, . . . , i,-l) (60) 
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where up denotes the daughter-to-mother ratio of the cylinder measures: 
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It has to be emphasized that the definition based on the length scales still remains 
meaningful but leads to a quantity different from that related to entropies. Consider the 
partition sum Z," obtained by replacing in (13) the symbol probabilities p(i0,  il, . . .) by the 
Lebesgue measure (length) [(io, il, . . .) of the cylinders. The corresponding thermodynamic 
potential CCL)(&, @ I ,  . . .) differs from G(Bo, ,51, . . .) and corresponds in the limit of a 
homogenous temperature pi p to the so-called free energy pF( ,¶)  [31, 12, 41 (or 
topological pressure) of the map: CQ)(B, B ,  . . .) = BF(B) .  The length scale transfer 
matrix 

( i1 , i z  ,..., i , - i ~ r ~ ( p , B ' ) l i o . i j .  ...,i:-n) = t  @fB')(io, . . .i,,,-1)8j,,j; . . . ~ j ~ , , i ; ,  ( 6 2  

where t is given as in (55) and (56), yields the free energy functional dL) as 

7. The path-integral transfer operator 

The essential difference between the transfer matrices introduced above and their traditional 
forms appearing in the thermodynamical formalism is the factor EBn-fln+l (or p8fl-P"') that 
becomes unity only for pa = @"+I. These factors can play an essential role in determining 
the entropy functionals for general temperature distributions p ( t ) .  For example, a bivalued 
sequence BO, PI,  BO. PI . . . , that leads to a nowhere differentiable function ,¶(t), defines an 
entropy functional C((&, BI}) = -lnA1/2(&, p1) where A(&,, PI)  is the largest eigenvalue 
of the matrix product T(Bo, @ l ) T ( B l .  &). 

The class of smooth temperature distributions is, however, special in the sense that 
in this case the factors 1flfi-@"+l (or ppa-Pnt1) do not contribute to the entropy functionals. 
Although factors 18-p' (or $8')  with temperature differences of the order of unity appear in 
the products of transfer matrices, they are not growing exponentially with N and, therefore, 
do not contribute to the functional in (60). only modify the prefactors (for a rigorous proof, 
see the appendix). Thus, for smooth temperature distributions the transfer matrix (55)-(57) 
or (60) leads to the same functional as its simplified form obtained by formally setting 
[(io,. . . , ~ N - I )  1 or p ( i 0 , .  . ., ~ N - I )  1 in the nominators. Consequently, it is sufficient 
to use products of the traditional transfer matrices T ( p )  T(B, p' =,6) taken at different 
temperatures. This leads to accurate results in the limit N -+ 00 @ut has different finite- 
N corrections compared to the ones based on the exact transfer matrix). We notice that 
for smooth temperature fields only the local temperature &, but not the local temperature 
difference 

Recall that the tmditional transfer mahix of a one-dimensional map f ( x )  can be 
considered as the discretized version of a transfer operator L(p'), sometimes also called 
the generalized Frobenius-Perron operator [32]. It acts on some function Q defined on the 

- &+I influences the generalized thermodynamic potential. 

support x of maps f as 
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In an appropriate class~of smooth functions Q(y), the free energy BF(6) .  which for 
hyperbolic maps coincides with ( p  - M@), is obtained as -Inh(p) where A(@) is the 
largest eigenvalue of L(p) in this class. 

In the same spirit, we claim that it makes sense to consider a 'path-integral transfer 
operator' L[p] defined~ for any smooth temperature distribution BO). Formally it is obtained 
by considering the N + 00 limit of operators &(BO, . . . , ,!?~-l) acting on functions Q as 

where P j  = j 3 ( j / N )  and xi is the Ith image f'(x0) of XO. Let.h(p0,. . . , O N - ! )  denote the, 
largest eigenvalue of LN in the class of smooth functions. The entropy functional GB)[B], 
which for hyperbolic maps coincides with G[p],  is then obtained as the N + 00 limit of 
- l / N  Inh. In other words, we expect LNQ(Y) to behave for large N as exp ( -G(L)[p]N),  
i.e. to obtain G") as 

The convergence in N is expected to be exponentially fast, and rather good results can 
be obtained by computing the largest eigenvalue numerically. On the other hand, when 
working out the action of EN on a binary tree, one typically cannot go further than N M 20 
because of storage limitations. At such values of N the discrete set of p, does not yet 
yield a sufficiently good approximation to the smooth function p(t) .  One should go up to 
N = 50 to get high accuracy just like in the transfer matrix case. 

In order to illustrate the efficiency of the operator method, let us here consider a related 
problem, which is not tangled in any way by the covergence of the pj to p(t)I Instead of 
a smooth test function B ( t )  we take a given infinite sequence of parameters BO, PI,  Bz, . . . . 
If the sequence is periodic with period p ,  we define a thermodynamic potential GCL) by 

Note that, in general, C?CL) is not the same as the free energy functional GCL) because the 
factors l ~ ~ - ~ * + l  or p"-en+' are now not negligible in the matrices (56) or (61). Nevertheless, 
we found it worth studying the potential 6(L) related to the largest eigenvalue of EN since 
it is another interesting characteristic quantity that can be attributed to any mapping. 

As an example, we numerically determined 8(L)(p~, PI) for the fully developed logistic 
map f (x) = 4x(1 -x) and a periodic sequence Bo, PI,  po, PI, .  . . of period 2. The results of 
our numerical calculation (based on equation (67)) are plotted in figure 7. On the diagonal 
BO = 01 we recover the well known result 

i.e. phase transition behaviour at the critical point @ = -1 [12,32,4]. The other values 
in the (Bo, BI)-plane provide us with a more detailed thermodynamic description of the 
system. The numerics indicates that the critical point now extends to a critical line in the 
(BO, pl)-plane. The convergence of our method is rapid. For N = 11 seven digits are fixed 
already, except at phase transition points. 

Finally, returning to the general spirit of section 2, we may most generally define a 
path-integral transfer operator for some arbitrary (smooth) test function A depending on the 
entire trajectory XO, XI, q, . . . by considering a sequence of operators 

LN[AIQ(Y) = A(xo,xi, ..., Xx-i)Q(xo) .. (69) 
xnsf-N(r) 
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Figure7. Thermodynamic potential d”(00, PI) of the fully developed logisticmap forbivalued 
periodic test sequences 00, @ I ,  Bo, @ I ,  . . ., as computed from the largest eigenvalue of the ‘path- 
integral transfer operator’ EN, 

for large N. Again one is interested in the limit N -+ 00 and thermodynamic potentials 
given by the asymptotic exponential growth rate of &[A]Q(y). The operator (65) is 
obtained for the special choice 

8. Conclusions 

In this paper we have introduced a generalized thermodynamic formalism for dynamical 
systems, where the observable under consideration depends on the entire trajectory of the 
system. In particular, the constant inverse temperature @ of the usual approach is replaced 
by an inverse temperature field p(t). Here f can be regarded as a relative time variable. 
The standard thermodynamic formalism is recovered for a constant temperature field. The 
partition function of our approach can be regarded as a generalized path integral, where 
the underlying stochastic process is not the Wiener process but a more complicated process 
generated by the symbolic dynamics of the mapping under consideration. Our approach 
generalizes the concept of Rhyi  entropies to eneopy functionals. Similarly, the topological 
pressure becomes a pressure functional. A powerful tool to calculate the new thermodynamic 
potentials is a generalization of the transfer operator method. 

An interesting application of the path-integral approach could be its use for a more 
general characterization of fractaIs. It is known that fractals and multifractals can be 
generated as invariant sets of one-dimensional maps [12, 201. The dynamics on these 
sets is obviously transiently chaotic. One can perform a time-dependent analysis of the 
length scales (without normalization) induced by the generating partition of the set exactly 
in the same spirit as we did it with symbol probabilities in the bulk of the paper. In 
the case of a single-variable description (p(t) = constant), the corresponding free energy 
pF(p) comprises all multifractal properties of the fractal set and is equivalent with the full 
function D(B) of generalized dimensions. In particular, the value of the inverse temperature 
p where the free energy vanishes is known to coincide with the fractal dimension D(0) of 
the set. A path-integral analysis performed with a test function &(t) depending on some 
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parameter 17 leads to a weighted average of multifractal properties over 0 values lying in 
the image range of ,Sn(t). In particular, there may exist an qo where the path integral 
remains compensated, i.e. does neither increase nor decrease asymptotically with N .  The 
corresponding test function p ,  is then a kind of generalization of the fractal dimension 
concept. In the class of test functions 8, it is ,9,, that tests different generalized local 
dimensions D(p)  in such a way that the overall behaviour is similar to that corresponding 
to the fractal dimension D(0). 
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Appendix 

Let us consider the case of a smooth test function B(t). For the following it is convenient 
to label the matrix elements of the transfer matrix T(p . ,b , -~ )  of (56) by just two 
indices i and j .  Quite generally, the non-zero matrix elements of T are~of the form 
t ; j (pn,  A-1) = 1 $ - ' - " $ .  Let T(0)(pn,  a - 1 )  denote the simplified transfer matrix obtained 
by formally setting all length scales l i j  equal to 1. The corresponding matrix elements are 
denoted by tij (a, For example, for the special case of a two-step memory map 
(m = 2) we have 

(0) 

and 

In general, if we replace in (54) the transfer matrix T by the simplified transfer matrix T(O), 
the corresponding partition function is denoted by Z$'. The entropy functionals for the test 
function ,8(t), obtained from Zn and 2;) in the thermodynamic limit N -+ m, are denoted 
by G [ p ]  and G(o)[p], respectively. 

Theorem. 1. Let p ( t )  be piecewise monotonous on a finite number of intervals, and let the 
entries of the vectors la) and (cl be arbitrary positive numbers. Then 

G[@] = G'O)[B]. ' (A3) 

Pro& Let lhn denote the smallest length scale occurring in the transfer matrix. 

l,,,in = min l j j  . (A4) 
r.1 



1 
N - t m  N C[B] = - lim - In Z N ( @ ~ , .  . . , f l ~ )  

On the other hand 
B.-l-B > [W-l-B. 
lij A m 

where l,, denotes the largest length scale occurring in the transfer matrix. Analogously 
we obtain from (A7) 

G[B1 < G'o'IB1. (A8) 
Thus G[@] = @)[ f l ]  provided B(t) is monotonously increasing. If B( t )  is monotonously 
decreasing, the role of lfin and l,, is exchanged. If @ ( t )  is just piecewise monotonous on a 

in the regions I,&. ...,& 1, [&+I, .. . , &I. .. . of monotonicity, and the same proof 
applies, q.e.d. The extension of this result to the transfer matrix (60) containing the natural 
measure is straightforward. 
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