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Abstract, We introduce a path-integral-like partition function for chaotic mappings. This path
integral is based on arbitrary non-Markovian stochastic processes generated by the symbolic
dynamics of the map rather than the Wiener process. Our approach can be regarded as an
extension of the thermodynamic formalism to infinitcly many inverse ternperatures. The concept
of Rényi entropies is generalized to entropy functionals. A generalized transfer operator is
introduced, which allows us to caleulate the entropy functionals with high numerical precision,
Several examples are worked out in detail.

1. Introduction

The symbolic dynamics tec'hnique has proved to be very useful for the qualitative and
quantitative analysis of chaotic motion [1—4]. Regarding the initial values as random
variables, deterministic chaotic systems generate complicated stochastic processes, which
typically are neither Markovian nor Gaussian. A useful tool is to characterize these processes
by a grammar of allowed and forbidden sequences in the symbol space, and to study the
probabilities associated with the various symbol sequences. Indeed, the hierarchy of all
probabilities yields quite a complete description of the stochastic properties of the dynamics.

The idea of the present paper is to use the complicated stochastic processes generated
by nonlinear dynamical systems for the definition of a generalized path integral. The usual
path integral, of utmost interest in Euclidean quantum theory and quantum field theory
[5-7], is based on a simple Gaussian Markov process: the Wiener process, or Brownian
motion. Nevertheless, replacing the Wiener process by a more complicated chaotic process,
we can formally define a more general path integral. A particularly straightforward and
easy method to introduce such a chaotic path integral is to choose a symbolic dynamicai
description, and to define a path integral in the symbol space, where transition probabilities
are well defined. In contrast to the Markovian Wiener process, the transition probabilities
will now also contain higher-order memory effects, due to the underlying deterministic
chaotic dynamics.

Qur path-integral approach can be formulated in an elegant way using the language
of the thermodynamic formalism of dynamical systems [4,8-14]. We consider partition
functions where a suitable observable depends on the entire symbolic path of the chaotic
system. In particular, we will choose an observable that measures the information production
of the system in quite a general way. In the language of the thermodynamic formalism our
approach means that we do not consider a single inverse temperature 8 but introduce an
infinite sequence of different inverse temperatures By, £, 8z, .... In the continuum limit
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these various inverse temperatures define an inverse temperature field (or a temperature
function). In this way we will generalize the concept of Rényi entropies {15] to entropy
Junctionals, which depend on a given test function, the temperature field.

It is well known that a stochastic process is not fully described by the moments (the
characteristic function) alone, rather, its complete determination requires the knowledge of
the set of all higher-order correlation functions (the characteristic functional) [16]. In the
same context we claim that the most complete description of the information production of
a chaotic system is not given by the Rényi entropies aione, but by the entropy functionals
introduced here. The Rényi entropies are recovered from the entropy functionals for the
special case of a constant test function.

Only in very rare cases can one evaluate path integrals in the symbol space (or entropy
functionals) exactly. As one of these rare examples, we will treat symmetric and asymmetric
tent maps, where we cbtain explicit expressions for the functionals. In more general cases
(m-step memory maps), a powerful numerical tool for the evaluation of entropy functionals is
a generalized transfer matrix method. The generalized transfer matrices depend on the local
temperature field. They reduce to the ordinary transfer matrices for a constant temperature
field. The entropy functional is obtained from the growth rate of the product of local transfer
matrices. The concept can be generalized to a path-integral transfer operator for general
one-dimensional mappings.

This paper is organized as follows. In section 2 we introduce path integrals in the
symbol space, starting from the definition of the usual path integral and generalizing to non-
Markovian symbolic stochastic processes. In section 3 we introduce entropy functionals,
which can be regarded as special path integrals in the symbol space, where the path-
dependent observable is chosen in such a way that the information production of the
system is measured. In section 4 we treat symmetric and asymmetric tent maps as simple
examples. In section 5 processes with a two- and three-step memory are investigated, and
the generalized transfer matrix is written down. Some numerical results are presented. In
section 6 we generalize to m-step memory maps, as well as to maps with escape, and to
non-hyperbolic cases. The general path-integral transfer operator is introduced in section 7.
Qur concluding remarks are given in section 8,

2. Path integrals in the symbol space

Let us first recall the definition of the usual path integral based on the Wiener process [5-7].
Given some observable A depending on the entire trajectory of the system, the path integral
Z with respect to A is defined as

Z=lim Zy (1)
N—=oo
where
ZnlA]l = fdxofdxl .. -jde Plxnlxy_plen—ixn_a) ...
---P(I{IX())A(xU,xl,...,.xN). (2)
Here

(= xe)? } @)

|
Xelxp—1) = ————=ex
Plxelxe—1) Do P [ De
are the transition probability densities of the Wiener process with diffusion constant D, and
T is a small time constant that goes to zero as N, the number of lattice points, approaches
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infinity:
t
T = — . - - : - 4
5 | , €Y
where ¢ is the total time elapsed. For example, to simulate a quantum system with potential )
V in Buclidean time ¢ (obtained by Wick rotation # — if of the physical time ) one chooses

for the observable A

&
Alxg, ..., Xy} =¢exp { = g V(xg)l ()]
and D = %i/m (see, for example, [14]). According to the Feynman-Kac formula, the
integral Zy converges to the integrated Euclidean propagator of the quantum system in the
limit N — co.

Let us now proceed to a chaotic mapping f : X — X. We assume that a generating
partition B = (B, ..., Br) of the phase space X exists (otherwise a supremum over all
possible partitions has to be taken). The symbolic dynamics technique can then easily be
applied (see, for example, [2, 4]). To each orbit xz41 = f(x;) we associate the symbol

“sequence ig, iy, f2,..., Where I = j if x; € B;. Let us denote the probability to observe

the symbol sequence fo,...,iw by p(ip,...,ix). Trajectories whose first symbols are
i, ..., iy start from an interval JN*D(,, | iy) called a level-(¥ + 1) cylinder. The
probability p(lo, ..., ix) is related to a given measure v and the level-(N + [) cylinders
JEENG,, ., ix) of the map by

plio, ..., in) =f dv(x). (6)
JEHL (1g,.0nin)

Typically, one chooses v to be either the natural invariant measure p or the Lebesgue
measure L. We can always factorize the probability p(ig,...,iy) into a product of
conditional probabilities:

plio, .. in) = pio) plirlio) plialiv, i) . .. plinlia, ... in—1). - @
Here p(ixlio, .- ., ix—1) denotes the conditional probability to observe the symbol i if the
sequence Iy, ..., iy was observed before:
. . Y ‘
plilio, ..., ikm1) = Pl le) ®

p(ifh Tany ik--])

(provided p{ip. ..., 1) 5% 0). Next, we define a partition function Zf\‘,” for a given
observable A and a measure v in an analogous way as it is done for the ‘classical’ path
integral ; .
N pio) pCirlio) pizlio, i) ... pCinlios - - -1 in—1) A0, - . in) . )
Igysend iy
The integrals over the continuous states are replaced by sums over the discrete states i.
The fundamenta! difference compared to the usual path integral is the fact that, in general,
for a chaotic mapping f, the transition probabilities p(ilfg, . ... ix—;) depend on the entire
history fo, ..., ix—1- Generically, the stochastic processes generated by chaotic mappings
are non-Markovian. Moreover, they are non-Gaussian. This is what makes the partition
function (9) an interesting object to study in the thermodynamic limit ¥ — oo.
If there is no generating partition, we éither have to take a supremum over all possible
partitions or introduce an additional continuum limit in (9), where the size of all cells
approaches zero. In the latter case we obtain a generalized path integral defined on a
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continnum of states. The advantage of a generating partition is that the continuum limit
need not to be performed.

It depends on the question under consideration what kind of function is chosen for the
observable A(ly, ..., {y). If onre is interested in a generalized quantum mechanics based on
a more complicated stochastic process than the Wiener process, an appropriate choice is

N
A(ig,...,iN)=exp{—£ZV(ik)] (10)
b
where V is a potential defined on the coarse-grained phase space. A similar approach,
based on two-dimensional maps f and a path integral defined in the phase space rather
than the symbol space, has been shown to retain the wvsual quantum mechanics based
on the Wiener process in an appropriate continuum limit of the partition [14]. In this
paper, however, we would like to consider other test functions A that are motivated by the
needs to characterize the information production of chaotic systems rather than by quantum
mechanical applications. These test functions will lead to a generalization of the concept
of Rényi entropies.

3. Entropy functionals

We choose a test function given by the conditional probabilities itself raised to different
powers f; — 1: -
Ao, .-, in) = pGoY* ™ pliali)® ™" ... pGinlia, ..., in-D)P an
That is to say, we study the partition function
ZPBo - By =Y plioYPp(ili)? ... plinlio. ... .in-1)".  (12)
Ingerki

Using equation (8), we may equivalently write

ZBor-o B = 3, PUYPPGio, i ... plias ..., i)™ (13)
gt = Br — Bryi k=0,...,N—1 (14)
gn = Bn - (15)

In the thermodynamic formalism, the f; can be regarded as inverse temperatures. Usually
one studies only one inverse temperature or at best two [17-22]. Here we want to illustrate
that, in fact, the generalization to infinitely many inverse temperatures makes sense for a
more general characterization of the information production of chaotic systems.

First of all, let us introduce conditional dynamical scaling indices o by writing

p(ikiiﬂa "-91.]5—1) =e‘¥k (16)

(p(ip) = e™). By subsequent differentiation of Zf\}’)(ﬁo, ..., By) we obtain the higher-order
correlation functions of these scaling indices:

am g V) fo 7L ny
PRy Zy Bor -+ B pmprmmpn=t = (0500 .. a}). (17
Here (. - -) denotes the expectation value with respect to the path probabilities p(ip, ..., ix).

Next, we introduce a generalized thermodynamic potential G® (8, 81,...) as

v B 1 W
GO, i, ) = = lim —InZP(Bo..... ). (18)
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It is defined for a given infinite sequence of inverse temperatures gy, fi, - ...

For a classical path integral, the time difference T between the transition steps approaches
zero in the thermodynamic limit N — oo (see equation (4)). It is actually convenient for
partition functions in the symbol space as well to consider an analogous scaling limit of the
time. We may assume that each iteration step of the map corresponds to a time unit v that
is related to the total number N of steps by

t
T=—. S . .
N (19)
The total time elapsed is f = Nr. We then perform the limit v — 0, N — co in such a
way that t = Nt stays finite. Introducing some function (¢} defined on the interval [0, 1],
for each N the £, may be chosen as

B = Blkr) = Bkt /N) (20}

(the B = ,EN) actually depend on two indices k£ and N, but usually we will suppress
the index N). In the [imit N — oo we obtain a functional depending on the given test
function S(¢'):

i : 1 \J
G(B1 =~ Jim —InZy (Bke/N)). @0

This functional plays an analogous role for the information production of 2 chaotic system
as the characteristic functional does for the correlation functions of a stochastic process
(see, for example, [16]).

By a trivial change of coordinates (i.e. choosing the test function (') = B(¢'/1) instead
of (")) we can always reduce the problem to that of a test function defined on the unit
interval [0, I]. Thus from now on we will use the following definition of the functional:

1
GUIB) = - lim —InZ{P(BO). BA/N), ... BL)). 22)

In what follows we shall mainly concentrate on the case that the path probabilities are
taken with respect to the natural measure p of the map, and suppress the superscript . If
all 8, take on the same value 8, we obtain (up to a trivial factor) the Rényi entropies {15]

K(B):
G, B,..)=(B—-DK(B). @3)

For non-constant f;, we obtain more general types of entropies characterizing the system
in such a way that higher-order correlations in the symbol sequences are ‘scanned’ by the
various g. G(Bo, B1, - . .), respectively G[8], will therefore be called the entropy functional.

What is the ‘physical meaning’ of these entropy functionals? Suppose we want to
investigate the information production of the chaotic system in a time-dependent way. For
example, we may first be more interested in topological properties of the symbealic trajectory
(8 = ), but at the end of the observation (at time ¢t = 1) be more interested in metric
properties (§ = 1). This change of interest can be modelled by some function 8(t) on the
unit interval that increases from 0 to 1. The corresponding information production of the
system is measured by G[8]. The result depends on the entire function 8(z). We will work
out several examples in the following sections.
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4. Symmetric and asymmetric tent maps

As a rather trivial example, Iet us first consider the symmetric tent map
x4

2x 2
F) = N 24)

2(1 —x) x>%

on X =10, 1]. Here the symbols i) take on two values Q0 and 1. We have p(ip,...,ix} =
2=+ and p(iglio, ... fk-1) = 5. Thus

Zn(Bo, ..., By =2 (%)50+“-+ﬁ~ -
(the same simple result applies to the binary shift map). This yields

] 1
G(Bo, Br,..) = (—1 + lim —-(ﬁo+---+ﬁw)) In2. (26)
N—eo N
Since B = B{kt} and 1/N = T, the entropy functional is given by
1
G[8]l = (—1 +f dr 5(1)) In2. 27
0
For B(r) = By = constant this reduces to the well known result
G(fo} = (—1+ fo)In2 (28)

i.e. the Rényi entropies K (fy) have the constant value In2. If the function B(#) is not
constant but increases (for example} as a power law in ¢ from ¢ to 1

pty=1" n>0 (29)
we get
Ui
G = - In2 30
= ~—1 (30)
i.e. some intermediate value between G(0) = —In2 and G(1) = 0, which depends on the
exponent 7.
A somewhat less trivial example is provided by the asymmetric tent map
0<x <
oy = F/m0 SR @D
{1 —x)/w wp<xK1
on X = [0, 1], where w; = 1 — wy. In this case the natural measure has a constant density
and, therefore, the probability to find a symbol sequence iy, ..., i is
p(f(}, ey ik) = Wi Wiy .- Wy - (32)
From equation {13) we obtain
ZnBoy---r B) = D, Wi (wiwy )P ... (wyy .. w, ) (33)
Hormemsdit
Since g + ge+1 + -+ + gy = B
Zn(Bor.. o By =y - wiwf . wf (34)
- A
N .
= [T (wht +wf). (35)
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This vields
[ H Jc
G(Bo, Brs -y == lim = Z In (wf* + w*) (36)
and the entropy functional is given by

1
GIB] = — fu dt In (wf® + wf®). 37

Recently, it has been shown that the asymmetric tent map produces information in just
the same way as successive measurements on a quantum mechanical system with a finite
two-dimensional phase space do [23]. In this physical application, a non-constant S(z) (or
in general, a test function dependmc on the entire symbohc trajectory) corresponds to a
measuring device that changes in time.

5. Processes with two- and three-step memories

The asymmetric tent map provides an example for which the conditional probabilities only
depend on the very last digit of the symbolic cade. One can extend the range of the memory
by one step if one considers piecewise linear single humped maps that have breakpoints (i.e.
non-differentiable points) at the two pre-images of their maxima, too (see figure 1). Such
maps are linear on their level-2 cylinders J @ (ip, i;) (in the case of fully developed maps,
like, for example, the one shown in figure I, only three of the slopes are independent).
In such cases the density o(x) of the natural measure p is piecewise constant on the two
level-1 cylinders. Let (i, i;) denote the modulus of the slope on cylinder J@ (iy, ;). The
ratio of the constant values (0} and g(1) on J®(0) and JV(1), respectively, follows from
the Frobenius—Perron equation

2(0) = o(0)/5(00) + o(1)/s(10) (38)
e(1} = g(0)/s(01) + ¢(1)/s(11) (39)
fl=)

.......... Av"'.__ Figare 1. Example of a two-step memory map
; ; on X = [0 11. The parameters are £(0,0) = 4,

Ny : s(ﬂ = 2, s(l, I) =31, s(l, 0) and 10, 0)
¥ s B 10D = & 1D = 10,0 = 3
it L . The general condition for the Markov property of
0 01 1 10 such maps implies the relation s (0. Ds(1, 0)(s(0, 0)—

Ds(1. 1} — D)= s(0, Ms(l, 1) between the slopes.
T The length scales follow from normalization.
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(see, for example, [24]}. The one-symbol probabilities are then obtained as p(iy) =
o{ip)l({#p). Here and in what follows we use the notation that I(iy, iy, ..., {y—;) denotes
the length of the level-N cylinder J (g, i1, ..., ixn—1)-

A direct computation of the two-symbol partition sum shows that Z; is the scalar product
of two real vectors

Z1(Bo, B1) = {c(Bi)lalBi, Bo)) (40)
where the components of 2 and ¢ are

{a(B, B)lio) = p¥ (i)l P (i) (41)
and

{c(B)lio) = I (i, 0) + ¥ (o, 1) (42)

respectively ({o =0, 1). We use the convention that ‘ket’s denote column vectors,
In the case of symbol sequences of length three, 2 2 x 2 matrix T is sandwiched between
the vectors a and c:

Z2(Bo. B, B2) = {c(B)T (B2, B1)a(Br, Bo)) 43)
where

T, BN = PP @ s~ @, D). (44)
Note that the argument of ¢ has been shifted to 5;.

Considering longer and longer symbols implies the appearance of more and more
products of the same matrix T taken at different temperatures. One obtains

Zn(Bo, ..., Bn) = (BT By, Bn-1) ... T (B2, Br)|a(B1, Bod}. (45)

This form suggests that T can be called a trensfer matrix which in our case also transfers
the temperature. It is worth noting that transfer matrices of this kind have already been
psed in the theory of Ising systems a long time ago [25]. In fact, the two-step memory map
shown in figure 1 corresponds to a nearest-neighbour Ising chain [26], and our computation
is the analogue of applying the transfer matrix method to a chain the temperature of which is
changing in the course of this procedure. It also follows from (18) that the entropy functional
G(Bo. b1, . - -) can be obtained from the asymptotic growth rate of the (N — 1)-fold matrix
product T(By, Bx-1)-.. T (B2, B1) acting on any fixed generic vector.

In order to find the general structure of the transfer matrix let us also consider cases
with three-step memories. Such maps can be obtained by introducing breakpoints at the
endpoints of the level-3 cylinders, too. Let s{ig, {1, {2) denote the modulus of the slope of
the piecewise linear map on the cylinders J®(iy, i), i) (see figure 2).

The natural density now turns out to be piecewise constant on the level-2 cylinders.
Denoting its values by g(ig, {1), the Frobenius—Perron equation implies that the column
vector |g} = (g(0,0), 0(0, 1), (L, 1}, 2(1, ®)) is a solution of the matrix equation |g) =
T|o} where T is
571(0,0,0) 0 0 s71(1,0,0)
s710,0, 1) 0 ¢ s71(1,0,1)

0 s7I0, 1L, s, LD 0
0 570,150 571, 1,0 0
With the knowledge of o one can compute the cylinder measures and the conditional

probabilities of symbol sequences of any length, A direct computation of the partition sum
then leads to the form

Zx(Boy ..., BN = {BOIT (Bu, Br-1) ... T{Bs, B2)la(B2, Brs Bo)y.  (47)

T= (46)
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Figure X. Example of a three-step memory map
on X = [0,1]. For simplicity, we have chosen a
symmetric case, although our approach is valid in
full generality. The parameters are 5(0,0,0) = l.,[-’,
50,0,y = ¥, 50,1,1) = £, 50.1,0) = } and
10.0,0) = £, 100.0.1) = 2, 10, 1. 1) = 45,
{(0,1,0) = 2. The general condition for the
Markov property of such maps implies the relation
£{0,0,1) 5(0,1,0) {(0,0,0) — 1}(s(0, 1, I} — 1} =
£(0,0,0s(0, 1, 1) between the slopes. The length
z scales follow from normalization.

(=)

000 001 011 410 I10 111 tp1 100

Now the vectors ¢ and ¢ can be expressed as
(@a(B, B', B"i, it} = pP (i) PP (ishio) 8 (io, ix) (48)
(c(Bliv, i1) = Plio, i1, O + B (i, i1, 1) . - (49

The transfer matrix is a 4 x 4 matrix with eight non-zero elements and depends on two
consecutive values of B just as in the previous case. 1t is of the form

#-10,0,0) 0 0 17-8(1,0,0)
P (0,0,03 .00y
F-A@,0,1) - (1,0,1)
T(ﬁ )5’) — 5#(0,0,1) ; 0 0 SACL0,1 (50)
§ 0 -, FALLD 0 )
. 0,1, 0,11
0 F-ioLe  FAaa 0

(0,1,00 $FQ1L1,0)
This is exactly of the same structure as the usual transfer matrix introduced in the
thermodynamic formalismm of dynamical systems [27]. Note that 7(8, 8") contains
geometrical factors solely, and the only place where the densities appear is in the vector a.
The matrix representing the Frobenius—Perron equation is just T = T(1, 1).

The generalized transfer matrix method provides us with a very precise algorithm
to calculate entropy functionals numerically. To test our method, we have chosen three
different test functions A(z) on [0, 1] parametrized by a parameter 1, namely B{P(t) = 17,
BA(t) = sin2xt, and () = nt. The B values tested by these functions take values
around the origin. By adding arbitrary constants or taking other functional forms any subset
of the S-axis can be investigated. We have chosen four different examples of mappings: The
symmetric tent map, an asymmetric tent map with wy = é, a two-step memory map with
5(0,0) =4, 50, 1) =}, s(1,1) = 2, s(1,0) = £ (figure 1), and a symmetric three-step
memory map with 5(0,0,0) = 2, 5(0,0, 1) = 1, 5(0, 1, ) = 2, 50, 1, 0) = I (figure 2).
The entropy functional has been calculated numerically from the asymptotic growth rate of
the partition function (45), where the transfer matrix is given by (44} and (50}, respectively.
The numerical results for G[8{"] as a function of the parameter 7 are plotted in figures 3-5.
The convergence of the method is rapid and the necesssary amount of computing time is
very small. Proceeding to just N = 50, we already obtain the entropy functionals G[B{]
with a precison of five digits. This means that the errors in figures 3-5 are smaller than
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symimatric tent ——
] asymmetric tent ===«
i 2-5tep memory -+
9 3-5tep memory ~—--
AR .
X
‘\
D2 % E
".\\.
&) %
D30 3 4
4
05
'D s 1 ] L 1 1 1 1 1
Yo a5 1 15 2 3 35

Fipure 3. Entropy functionals obtained with the test function £{(z) = ¢ for the symmetric

tent map, the asymmetric tent map with wo = 1/6, and the two- and three-step memory maps
of figure 1 and figure 2, respectively. Each curve starts in the origin because for g = 1 the

entropy functional vanishes. The range of £ values tested is [0, 1] in this case. For large n all

curves come close to the horizontal line & = —In2 since then the function ¢7 takes on values
very close 1o zero in almost the entire interval 0 < ¢ < 1, and for § = 0 the modulus of the
entropy function coincides with the topological entropy K (0) =In2 of the map.

symmatnc tant ——
asymmpetric tent =---
2-slen marmary -----
A-gtop mamory  ——-

0 L L) L} ¥

0.5

RS

Iy sin 2mmt] “-.\
15 F ™~
2t
s}
1] 1 L L L 1

0 05 1 15 2z 25 3

Figure 4, Same as figure 3, but with an oscillating test function with average 0 (ﬁézl{r) =

psin2rt), The curves now start at G = —K(0) = —In2. Note that the deviation from the
entropy functional of the tent map increases with the amplitade 7 of the oscillations. The interval

tested is now [—n, #]. The monotonic decrease of G with 7 follows from the observation that

for B < 0 than for g/ = —§.

the contributions (8 — 1)K () related to the local Renyi entropies K(f) are larger in modulus
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the widtlis of the curves plotted. Most of our numerics was done with N =-100. The
symmetric tent map mainly served us as an example to check our results, since for this
special mapping all entropy functionals can be evalvated analytically with the help of (27):

tent[ A(1)] . 1

G[p0) =~ 2 &
G D] =~Im2 (52)
Gwm[ﬁ,?) =_(1_,%,7) n2 (53)

(the same formulae are valid for the binary shift map). The plots thus show in a quantitative
way how the information productions of the various mappings deviate from that of a simple
Bernoulli shift dynramics. L

T T T T T T T T T
symmetric tet ——-
asyrnmelric tant === |
2-stap emary -~
3-step mamory — -

Gl

0.5

Figure 5. Same as figure 3, but with a linear test function ﬁ,? ) (t) = nt. The monotonic increase
of G with n is due to the fact that the interval [0, ] tested by n¢ is non-negative. The local
contributions (8 — 1)K (8) of increasing order become more and more dominating.

6. The general case

First, consider the case of an m-step memory map that is piecewise linear on its level-m
cylinders. It is clear from the examples above that Zy can then be written as

ZnBy, ... Bx) = (C(ﬁy)lT(ﬁN, Br-1) .. T (B, Buor}l@a(Brm—1,---, Bod} (34)

where g and ¢ are now vectors with 2»~! components and 7 is a 27! x 2"~! matrix with
2™ non-zero elements. Their explicit forms can be derived in an analogous way as above,

Let us now turn to general smooth maps exhibiting fully developed chaos. The
effect of truncating the memory in the symbol sequence distribution has been studied in
detail. Szépfalusy and Gydrgyi pointed out [28] that truncated entropies computed with the
assumption of having an I-step memery in p(ip, ..., iy} approach the exact metric entropy
K(1) in an exponential way as exp (—y{) where y is a characteristic quantity of the map,
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the so-called entropy decay rate. It is typically of order unity with the exception of near-
intermittent maps where y is very small. In intermittent systems the decay is algebraic
implying ¥ = 0. For one-dimensional fully developed maps the entropy decay rate can also
be expressed by the order-3 Rényi entropy K (3) as y = 2K'(3). Analogous investigations
of the order-g Renyi entropies X (g) led to the introdoction of generalized entropy decay
rates ¥ (g) [29]. They are typically of the same order of magnitude as . These results
show that for fixed 8 values memory effects are only important for sequence lengths of
the order of 1/y. In our path-integral approach, we thus expect that for functions testing a
not too broad range of 8, smooth maps behave similarly as m = 1/y-step piecewise linear
models, and with the exception of near-intermittent cases this m is of order unity.

As an example, we calculated entropy functionals for /-step memory approximations of
the fully developed logistic map f(x) = 4x(1 — x). These piecewise linear approximations
are obtained by attributing constant slopes to the N-cylinders of f. A straightforward
calculation yields for the two-step memory approximation the slopes s(00) = s(10) =
V2(/2Z + 1), s(01) = s(ll) /2, and for the three-step memory approximation
5(000) = s(lOO) 24+ V2 + /2, s(001) = s(101) = NZHV2 42, 501D = s(111) =
N2 ++/2 — /2, 5(010) = 5(110) = /2 — +/2. Figure 6 shows the corresponding entropy
functlonals for the same test functions ﬁ,‘f’(t) as in figures 3-5. Indeed, for # < 2 there is
hardly any difference between the results for the two- and three-step mappings, thus here
the functionals approximate those of the logistic map quite precisely. On the other hand,
for larger values of #, corresponding to larger 8 intervals tested, the difference between

T 1 1 1 T T L} T []
| 2-stap ———

1.5 ¢ g step -—-
= .s{ep .....
r,'sm27rt3 -5op v
ge2step -
1l 3-step -----

Figure 6. Entropy functionals obtained for two- and three-step roemory approxlmatmns of
the fully developed loglstlc map f{x) = 4x{l — x}. The test functions are ﬁ oy =,
,3,, (r) = qsin(2rte), ,6,, (:) =nt, respectively. The entropy decay rate for this map is

=1In4 [28]. Thus we expect that a three-step memory map is a good approximation, This is
supported by the good coincidence of the two- and three-step results for those n values where
the range of temperature tested is not too beoad.
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the two- and three-step functionals increases. Here memory effects are measured in 2 more
sensitive way.

The patural measures of smooth hyperbolic maps have non-singular densities, Therefore,
the scaling behaviour of the length scales and the cylinder measures is the same.
Consequently, for such maps we expect Zy to appear in the form of (55) where the transfer
matrix is of the type

(tsizsos bt T8, B0y i, -yl g) = BP0, b oo Bty (55)
The non-zero matrix elements are '

tBBGy b)) =B, )P 0, e Eer) (56)
where o stands for the daughter-to-mother ratio [26] defined as

. , (I Sy
o{ig, ...y ime) = T2 (57)
Wiy, ... im—1)
In piecewise linear m-step processes o'{ip, ..., im—1) = sy, ..., im—1) and we recover

the previous results. For general smooth hyperbolic maps the explicit form of the vectors
2 and ¢ 15 not known but the generalized thermodynamic potential can be extracted from
the growth rate of the product T(By, By-1) - .- T (Bn, Bu—1) when acting on any generically
chosen fixed vector ¢’. Defining

| T(Brns Br-1) -+ - T(Ben—1: B}

MBo.....Bn) = Y (58}
as the growth rate of the product T(8w, Bwv—1) ... T(Bms Bu—1)ic’), we obtain
1
Gigo, Pr.-.-) = "‘Ji_r)lgoﬁlﬂl(ﬁov . Br) (59)

independently of ¢’. Here || || denotes the length (or any appropriate norm) of a vector.
The formula can again be used for the numerical determination of the generalized
thermodynamic potential by choosing e.g. |¢') as the vector (1,...,1). In (practice, one

calculates numerically the difference InA(BS", ..., B4 —In (880, .., ﬁN):_"{”), where

ﬁ,EN )= B{k/N). The difference approaches G[8] for large N.

We emphasize again that the leading exponential behaviour is governed by the transfer
matrix rather than by the vectors it is acting on. Vectors ¢ and ¢ in (55) contain
information concerning the natural density but contribute to the prefactors only. This is
why the generalized thermodynamic potential can be determined by any generic choice of
¢’ correctly. }

It is worth mentioning briefly the case of open maps generating transient chaos [30].
Such maps possess fractal invariant sets, and the cylinders provide an ever refining coverage
of this set. Covering a set of measure zero, the total length of the level-¥ cylinders decreases
exponentially with . Therefore, what appears in such cases in the transfer matrix is the
normalized length {(iy, ..., in-1)/ Zio ..... iney P00y - - -y im—1) rather than the length itself.

Finally, let us return to fully developed chaotic maps and investigate the effect of
non-hyperbolicity. In such cases the natural density is no longer analytic and, because
of its singularity, the cylinder measures p(ig, ..., iy) are not always proportional to the
cylinder lengths [(ig, ..., ixy). In order to define the entropy functional we have to use the
probabilities instead of the lengths. Therefore, we define the transfer matrix in its most
general form by replacing t%#) by

I,E‘B"H')(io, ceedmet) = pP P (i, ---,im—l)o’f(fo, Y P -~ (60)
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where o, denotes the daughter-to-mother ratio of the cylinder measures:

plo, -5 im1)
p(il’---sim—l).

It has to be emphasized that the definition based on the length scales still remains
meaningful but leads to a quantity different from that related to entropies. Consider the
partition sum Z3” obtained by replacing in (13) the symbol probabilities p(io, i1, . ..) by the
Lebesgue measure (length) I{iy, i;, ...) of the cylinders. The corresponding thermodynamic
potential G™ (B, B1,...) differs from G(By, B1,...) and corresponds in the limit of a
homogenous temperature 5 = S to the so-called free emergy SF(B) [31, 12, 4] (or
topological pressure) of the map: G (B,8,...) = BF(B). The length scale transfer
matrix

TN STy ol (- 151 'S A Y 8 Ll Y MY 1. P O (62)

where ¢ is given as in (55) and (56), yields the free energy functional G as

Tulior ooy bmar) = (61)

;
GV (8o, B, ) = = Jim < 1AO B, ... By, (63)

Here A® = (| TR By, By-1) - .- TV (B, Bu-)I’) 1D/ (11 1) 11)-

7. The path-integral transfer operator

The essential difference between the transfer matrices introduced above and their traditional
forms appearing in the thermodynamical formalism is the factor AP+t (or pfr—Pe1) that
becomes unity only for 8, = Bu+1. These factors can play an essential role in determining
the entropy functionals for general temperature distributions f(z). For example, a bivalued
sequence So, Bi» B, B1 - - ., that leads to a nowhere differentiable function B(#), defines an
entropy functional G({Bo, 8i}) = —InA/2(8y, B;) where A(Bo, B1) is the largest eigenvalue
of the matrix product T(8q, 51)7T (81, Bo)-

The class of smooth temperature distributions is, however, special in the sense that
in this case the factors [P —Fert (or pPa—Pst1) do not contribute to the entropy functionals.
Although factors I#~# (or p#~#') with temperature differences of the order of unity appear in
the products of transfer matrices, they are not growing exponentially with N and, therefore,
do not contribute to the functional in (60), only modify the prefactors {for a rigorous proof,
see the appendix). Thus, for smooth temperature distributions the transfer matrix (55)-(57)
or (60) leads to the same functional as its simplified form obtained by formally setting
{({fg, ..., ixy—1) =1 or p(io,-..,ix-1) = 1 in the nominators. Consequently, it is sufficient
to use products of the traditional transfer matrices T(8) = T'(8, 8’ == B) taken at different
temperatures. This leads to accurate results in the limit ¥ — oo (but has different finite-
N corrections compared to the ones based on the exact transfer matrix), We notice that
for smooth temperature fields only the local temperature 8¢, but not the local temperature
difference fp — fr41 influences the generalized thermodynamic potential.

Recall that the traditional transfer matrix of a one-dimensional map f(x) can be
considered as the discretized version of a transfer operator £{8), sometimes also called
the generalized Frobenius—Perron operator [32]. It acts on some function Q defined on the
support X of maps f as

2(x)
e

L®em= 3.
xef-1(y)

(64
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In an appropriate class of smooth functions Q{y), the free energy AF(8), which for
hyperbolic maps coincides with (8 — DK (8), is obtained as —In A({8) where A(8) is the
largest eigenvalue of £({8) in this class.

In the same spirit, we claim that it makes sense to consider a ‘path-integral transfer
operator’ L£[B] defined for any smooth temperature distribution 8(¢). Formally it is obtained
by considering the N — oo limit of operators Ly (Bp, ..., Sy-1) acting on functions @ as

Q(xo)
L veeos BN = - 5
i MRy e ey = B
where B; = B(j/N) and x; is the /th image f(xo) of xo. Let A(By, ..., Bn—1) denote the.
largest eigenvalue of Ly in the class of smooth functions. The entropy functional GU[8],
which for hyperbolic maps coincides with G[8], is then obtained as the N — oo limit of
—1/N1n 2. In other words, we expect Ly Q(y) to behave for large N as exp (—GD[BIN),
i.e. to obtain G as
. L1 0(y)
LG} = — atihet e
G\™Ig] Nlimw In 00y (66)

The convergence in N is expected to be exponentially fast, and rather good results can
be obtained by computing the largest eigenvalue numerically. On the other hand, when
working out the action of Ly on a binary free, one typically cannot go further than N = 20
because of storage limitations. At such values of N the discrete set of §; does not yet
yield a sufficiently good approximation to the smooth function 8(¢). One should go up to
N = 50 to get high accuracy just like in the transfer matrix case.

In order to illustrate the efficiency of the operator method, let us here consider a related
problem, which is not tangled in any way by the covergence of the §; to B(t). Instead of
a smooth test function S(r) we take a given infinite sequence of parameters By, 1. Bz, - - - -
If the sequence is periodic with period p, we define a thermodynamic potential G by

L ~ L jm Zre20) _

G Bos - Bp-t) = - ‘,}gnmln o) _ (67)
Note that, in general, G® is not the same as the free energy functional GO because the
factors [»—Fw1 or pfr—Pr+t are now not negligible in the matrices (56) or (61). Nevertheless,
we found it worth studying the potential G related to the largest eigenvalue of Ly since
it is another interesting characteristic quantity that can be atiributed to any mapping.

As an example, we numerically determined G (g, 1) for the fully developed logistic
map f(x) = 4x(1—x) and a periodic sequence fo, 1, Bo, B1, ... of period 2. The results of
our numerical calculation (based on equation (67)) are plotted in figure 7. On the diagonal
Bo = A1 we recover the well known result

28In2 B<— '

(L) =

Mg, B) = { D2 B> (68)
ie. phase transition behaviour at the critical point 8 = —1 [12,32,4]. The other values

in the (Bg, Bi)-plane provide us with a more detailed thermodynamic description of the
system. The numerics indicates that the critical point now extends to a critical line in the
(Bo, B1)-plane. The convergence of our method is rapid. For N = 11 seven digits are fixed
already, except at phase transition points.

Finally, returning to the general spirit of section 2, we may most generally define a
path-integral transfer operator for some arbitrary (smooth) test function A depending on the
entire trajectory xg, X1, X2, ... by considering a sequence of operators

LylAIQ) = Y. AGwo,x1,...,%n-1)0G0) (69)

Xgef-N(¥)
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Figure 7. Thermodynamic potential G0 (gs, 81} of the fully developed logistic map for bivalued
petiodic test sequences S, 51, Bo. B1, - . ., as compated from the largest eigenvalue of the ‘path-
integral transfer operator’ L.

for large N. Again one is interested in the limit N — oo and thermodynamic potentials
given by the asymptotic exponential growth rate of Ly[A]Q(y). The operator (65) is
obtained for the special choice

Nw=1
Ao, - Tyot) = exp{—Zﬁ,- In ff'cx,-)s}. (70)
=0

8. Conclusions

In this paper we have introduced a generalized thermodynamic formalism for dynamical
systems, where the observable under consideration depends on the entire trajectory of the
system. In particular, the constant inverse temperature 8 of the usual approach is replaced
by an inverse temperatore field S(z}). Here ¢ can be regarded as a relative time variable.
The standard thermodynamic formalism is recovered for a constant temperature field. The
partition function of our approach can be regarded as a generalized path integral, where
the underlying stochastic process is not the Wiener process but a more complicated process
generated by the symbolic dynamics of the mapping under consideration. Our approach
generalizes the concept of Rényi entropies to entropy functionals. Similarly, the topological
pressure becomes a pressure functional. A powerful tool to calculate the new thermodynamic
potentials is a generalization of the transfer operator method.

An interesting application of the path-integral approach could be its use for a more
general characterization of fractals. It is known that fractals and multifractals can be
generated as invariant sets of one-dimensional maps [12, 20]. The dynamics on these
sets is obviously transiently chaotic. One can perform a time-dependent analysis of the
length scales (without normalization} induced by the generating partition of the set exactly
in the same spirit as we did it with symbol probabilities in the bulk of the paper. In
the case of a single-variable description (8(f) = constant), the corresponding free energy
BF(£) comprises all multifractal properties of the fractal set and is equivalent with the full
function D(f) of generalized dimensions. In particular, the value of the inverse temperature
B where the free energy vanishes is known to coincide with the fractal dimension D(0) of
the set. A path-integral analysis performed with a test function 8,(#) depending on some
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parameter 1 leads to a weighted average of multifractal properties over £ values lying in
the image range of B,(¢). In particular, there may exist an 7y where the path integral
remains compensated, i.e. does neither increase nor decrease asymptotically with N. The
corresponding test function B, is then a kind of generalization of the fractal dimension
concept. In the class of test functions B, it is B, that tests different generalized local
dimensions D(8) in such a way that the overall behaviour is similar to that corresponding
to the fractal dimension D(0Q).
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Appendix

Let us consider the case of a smooth test function B(¢). For the following it is convenient
to label the matrix elements of the transfer matrix T(8,, 8,1} of (36) by just two
indices i and J the generally, the non-zero matrix elements of T are. of the form
i (Bns Bn-1) = l 1 =PagBe et 7O {Bn, Ba—1) denote the simplified transfer matrix obtained
by formally settmg all lcngth scales {;; equal to 1. The corresponding matrix elements are
denoted by tg))(ﬁn, Bn-1). For example, for the special case of a two-step memory map
{(m = 2) we have

(18n-1 ﬂu)/s()[) (ﬂn—l ﬁn)f’s‘[o
T (B, Bn—1) = Al
oo o) ((lﬁr‘“"‘)fsm @)ty @y
and
_ﬁﬂ _ﬂn
T“’kﬁn,ﬂn_l)—(“’_ﬁﬂ o ) (A2)
01 i1

In general, if we replace in (54) the transfer matrix T by the simplified transfer matrix 7,
the corresponding partition function is denoted by Z¥ ~ - The entropy functionals for the test
function 8{(¢), obtained from Zy and Z in the thermodynammic limit N — o0, are denoted
by G[8] and GO[B], respectively.

Theorem. 1. Let B(t) be piecewise monotonous on a finite number of intervals, and let the
entries of the vectors la) and {c| be arbitrary positive numbers. Then

Gl =G98l. - : (A3)
Proof. Let lyin denote the smallest length scale occurring in the transfer matrix.

Iin = min; . ' (Ad)
!l.’
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For the moment, let us assume that ﬂ(r) is monotonously increasing, i.e. By~ B1 <
Thus, for any length scale /;;, we have l 1P ivﬂ P 1t follows

Zy(Bo, ... Bn) = (c|T(Bn. By—1) .- T(Bm, Bm—1)l2)
> ChprtierinBrumts Bmd oo Biyi (B, Bty

fm-l ----J.N

ST N o b Bty Bud o 10 o (B, By
[ )
= {Pm-=Pu 7O 8o, ..., B (A5)

Taking the logarithm and dividing by &, the contribution of the prefactor f‘s 1 =AY anishes
in the limit N — oo. Thus

GLB1 =~ lim 10 Zn(fos... )

.}
> lim <10 ZP ..., By) = GOLB). (A6)

On the other hand
Y (A7)

where In.x denotes the largest length scale occurring in the transfer matrix. Analogously
we obtain from (A7)

GIB] < G9B1. (AB)

Thus G[8] = G®[B] provided S(¢) is monotonously increasing. If B(¢) is monotonously
decreasing, the role of Iy, and Iy 1s exchanged. If 8(2) is just piecewise monotonous on a

finite number of intervals, we can estimate the matrix elements by factors iﬂ'" ~Fn ﬁ““ ~a

in the regions [Bum,---.Bx ] [Br+ts---» Byl ... of monotonicity, and the same proof
applies, q.e.d. The extcnsion of this resuit to the transfer matrix (60} containing the natural
measure 1s straightforward.
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